5,522 research outputs found

    Fourfold oscillations and anomalous magnetic irreversibility of magnetoresistance in the non-metallic regime of Pr1.85Ce0.15CuO4

    Full text link
    Using magnetoresistance measurements as a function of applied magnetic field and its direction of application, we present sharp angular-dependent magnetoresistance oscillations for the electron-doped cuprates in their low-temperature non-metallic regime. The presence of irreversibility in the magnetoresistance measurements and the related strong anisotropy of the field dependence for different in-plane magnetic field orientations indicate that magnetic domains play an important role for the determination of electronic properties. These domains are likely related to the stripe phase reported previously in hole-doped cuprates.Comment: 11 pages, 5 figure

    Potentiel De DĂ©couverte D'un Boson De Higgs Lourd Avec Le DĂ©tecteur Atlas

    Get PDF
    One of the main goals of the Large Hadron Collider (LHC) and of the ATLAS detector at CERN is to understand the mechanism that underlies the breaking of electroweak symmetry. To do this, different strategies have been developed to search for the Higgs

    Performance of a deterministic source of entangled photonic qubits

    Get PDF
    We study the possible limitations and sources of decoherence in the scheme for the deterministic generation of polarization-entangled photons, recently proposed by Gheri et al. [K. M. Gheri et al., Phys. Rev. A 58, R2627 (1998)], based on an appropriately driven single atom trapped within an optical cavity. We consider in particular the effects of laser intensity fluctuations, photon losses, and atomic motion.Comment: 10 pages, 6 figure

    The heavy quark search at the LHC

    Full text link
    We explore further the discovery potential for heavy quarks at the LHC, with emphasis on the t′t' and b′b' of a sequential fourth family associated with electroweak symmetry breaking. We consider QCD multijets, ttˉ+jetst\bar{t}+\rm{jets}, W+jetsW+\rm{jets} and single tt backgrounds using event generation based on improved matrix elements and low sensitivity to the modeling of initial state radiation. We exploit a jet mass technique for the identification of hadronically decaying WW's and tt's, to be used in the reconstruction of the t′t' or b′b' mass. This along with other aspects of event selection can reduce backgrounds to very manageable levels. It even allows a search for both t′t' and b′b' in the absence of bb-tagging, of interest for the early running of the LHC. A heavy quark mass of order 600 GeV is motivated by the connection to electroweak symmetry breaking, but our analysis is relevant for any new heavy quarks with weak decay modes.Comment: 12 pages, 7 figure

    Ultrastable CO2 Laser Trapping of Lithium Fermions

    Get PDF
    We demonstrate an ultrastable CO2 laser trap that provides tight confinement of neutral atoms with negligible optical scattering and minimal laser-noise- induced heating. Using this method, fermionic 6Li atoms are stored in a 0.4 mK deep well with a 1/e trap lifetime of 300 sec, consistent with a background pressure of 10^(-11) Torr. To our knowledge, this is the longest storage time ever achieved with an all-optical trap, comparable to the best reported magnetic traps.Comment: 4 pages using REVTeX, 1 eps figur

    Cavity cooling of a single atom

    Full text link
    All conventional methods to laser-cool atoms rely on repeated cycles of optical pumping and spontaneous emission of a photon by the atom. Spontaneous emission in a random direction is the dissipative mechanism required to remove entropy from the atom. However, alternative cooling methods have been proposed for a single atom strongly coupled to a high-finesse cavity; the role of spontaneous emission is replaced by the escape of a photon from the cavity. Application of such cooling schemes would improve the performance of atom cavity systems for quantum information processing. Furthermore, as cavity cooling does not rely on spontaneous emission, it can be applied to systems that cannot be laser-cooled by conventional methods; these include molecules (which do not have a closed transition) and collective excitations of Bose condensates, which are destroyed by randomly directed recoil kicks. Here we demonstrate cavity cooling of single rubidium atoms stored in an intracavity dipole trap. The cooling mechanism results in extended storage times and improved localization of atoms. We estimate that the observed cooling rate is at least five times larger than that produced by free-space cooling methods, for comparable excitation of the atom
    • …
    corecore